

Kubernetes Cluster Edge Reference
Architecture with Omni and

Talos Linux

Executive Summary
This document serves as a foundational reference for deploying edge Kubernetes
clusters with Omni and Talos Linux, ensuring security, performance, and operational
excellence.

Kubernetes is the leading container orchestration platform, enabling organizations to
efficiently deploy, manage, and scale applications. Omni and Talos Linux bring
simplicity and security to bare-metal and edge Kubernetes, making infrastructures
secure by default, easier to use, and more reliable to operate.

This edge architecture document provides a blueprint for deploying a standard
Kubernetes cluster using Omni and Talos Linux, outlining best practices for
management, security, and disaster recovery to deliver a scalable and resilient
platform for cloud native applications. While there are many options for deploying
Kubernetes, this is our recommended architecture.

Edge compute environments are defined by close locality to sources of data, or for
data distribution, and architecturally it is a form of distributed computing. In these
environments, there may be restrictions on compute, networking, and power. Earthly
environmental conditions may also apply such as temperature and humidity.
Specialized hardware and software may also be used to supplement data collection,
data distribution, or varying restrictions and conditions.

Technology Overview
Omni and Talos Linux redefine edge computing by replacing the fragile,
cobbled-together approach of remote management for traditional Linux distributions
and Kubernetes deployments with an optimized and autonomous approach to edge
Kubernetes.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 1
2025-06

Talos Linux
Talos Linux is an open source Linux operating system (OS) purpose-built for
Kubernetes and edge deployments, that operates entirely through an API, eliminating
traditional SSH and shell access and user management burden, thereby providing a
highly secure and minimal operating system for Kubernetes clusters.

Key features include:

● Immutable OS: Prevents configuration drift and enhances security.
Image-based updates simplify upgrades and eliminates patching.

● API-Only Management: No SSH or shell access, reducing attack surfaces.
Declarative API prevents configuration drift and imperative API endpoints
provide on-demand information gathering and debugging.

● Built-in Security: Inherent security through the implementation of Kernel
Self Protection Project standards (KSPP), SELinux, TPM support, disk
encryption, SecureBoot, read-only root filesystem, boot from an in-memory
SquashFS file system, and modern cryptographic standards.

● Lightweight and Optimized: Talos Linux is designed specifically to run
Kubernetes. It comes with fewer than 50 binaries and no package manager
or traditional userland tools included by default. It also provides system
extensions and overlays to add optional drivers, services, and hardware
support.

Omni
Omni makes managing your Kubernetes clusters predictable and reliable by
collapsing the overly complex Kubernetes functions into a merged infrastructure with
operating system management. Omni seamlessly delivers edge deployment with
simplified remote management, centralized cluster provisioning, secure access, and
supported maintenance.

Key features include:

● Observability: Simplifies oversight and management through the collation
of node service status, kernel logs, usage metrics, and configuration.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 2
2025-06

● Purpose-Built for the Edge: Unlike general-purpose solutions, Omni and Talos
Linux were built from the ground up to operate Kubernetes securely and
efficiently.

● Zero-Trust Security Model: Omni and Talos Linux ensure hardware and
software integrity with central authentication, Trusted Boot, TPM disk
encryption, an immutable OS, and secure access through a private network
with SideroLink, all with no local network firewall configuration required.

● Automated Remote Operations: Omni establishes a secure, encrypted tunnel
that automatically connects edge nodes to a central control plane, enabling
seamless remote management with RBAC and access policies.

● Simplified Deployment and Upgrades: Effortless provision compute through
booth media, connecting compute from any location running Talos Linux.
Simple, automated upgrades for easy deployment and prevents configuration
drift.

● Minimal Footprint, Maximum Performance: Omni and Talos Linux are
lightweight, secure, and highly optimized for constrained environments.

Upstream Kubernetes
Talos Linux deploys upstream Kubernetes without API modifications and ensures full
compatibility with the Kubernetes ecosystem. By running pure upstream Kubernetes,
Talos Linux provides a reliable, community-aligned foundation for cloud native
workloads. This provides:

● Consistent Behavior: Conforms to Kubernetes distribution under the CNCF
Kubernetes conformance program, ensuring your deployment with Talos Linux
is consistent with other Kubernetes distributions.

● Maximum Compatibility: Works seamlessly with all Kubernetes tooling, APIs,
and extensions.

● Security and Stability: Avoids vendor lock-in and ensures regular updates and
security patches from the Kubernetes community.

● Predictable Upgrades: Ensures smooth upgrades without proprietary patches
that could introduce unexpected issues.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 3
2025-06

Solution Overview
This document targets edge enablement for Kubernetes, leveraging Talos Linux as
the operating system and Omni for remote management and access to leverage
limited compute capacity and edge limitations.

Cluster Architecture
There are two suitable configurations for using Talos Linux and Omni:

Single Node Configuration

● Control Plane Nodes: One node configured to allow the scheduling of
workloads

● Configured without high availability

Multi-node control plane

● Control Plane Nodes: One or three Talos Linux nodes for the control plane. If
only one control plane node is deployed, note that the control plane will not be
highly available, although it can support multiple worker nodes for worker node
fault tolerance. In the event of the failure of the control plane (which is more
likely with a single control plane node), workers can continue to run their
workloads temporarily but cannot schedule or manage new workloads.

● Worker Nodes: Scalable Talos Linux nodes sized for workload requirements.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 4
2025-06

Control Plane Nodes
Control plane nodes host the critical components responsible for managing the
cluster's state, coordinating nodes, and providing the API server. It is essential that
they are secure, available, and performant.

Kubernetes uses etcd on control plane nodes as a distributed datastore that provides
high availability, fault tolerance, and performance.

Best Practices for Provisioning Control Plane Nodes
● Control plane nodes should be sized appropriately for the workloads. In order

to determine best sizing, testing with actual workloads is recommended. A
Kubernetes cluster that has few deployments, static node membership, and no
additional namespaces will have very different requirements for the control
plane nodes compared to a cluster that has a rapid rate of deployments,
frequent worker node scaling, many namespaces, and applications that make
expensive API requests, even if they have the same number of nodes.

● As a general guideline, control planes should have either:

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 5
2025-06

o A minimum of 8GB of memory, 4 cores, and 40GB of disk storage if the
cluster has fewer than 100 worker nodes

o A minimum of 32 GB of memory, 8 cores, and 40GB of disk storage if the
cluster has more than 100 worker nodes

Beyond this, sizing is dependent on the workload. We recommend gradually scaling
up the workload on the cluster and monitoring the control plane nodes. If resource
usage of either memory or CPU exceeds 60% capacity, then increase the CPU or
memory resources available to the control plane nodes. This will ensure that the
control planes have sufficient capacity to handle resource spikes without
compromising the stability of the cluster.

For Highly Available Configurations:

● Use three control plane nodes.

o While it is possible to scale beyond three control plane nodes, increasing
the number of nodes beyond three can cause replication overhead (as all
writes must be replicated to all etcd members). This can degrade
performance.

o A control plane of three nodes can only survive one node failure while
maintaining quorum. Thus, it is imperative that effective monitoring is
employed to trigger alerts on any failures of control plane nodes.
Increasing the control plane count beyond three nodes can add fault
tolerance, but as comes at the expense of performance.

● Because control planes run not only the Kubernetes API server components
but also the etcd datastore, it is important to ensure they have a fast disk IO
performance. We recommend locally attached NVMe drives.

● Because etcd writes must be replicated among all control plane nodes,
high-performance/low-latency networking between control plane nodes is
essential. We recommend control plane nodes be located within different
racks of the same network within the same datacenter to support fault
tolerance. Network latency between nodes should be less than 15ms RTT
(Round Trip Time).

Note: There are workloads where scaling beyond three control plane nodes can be
beneficial for performance, as some reads can target any replica, but for most
workloads, adding more etcd nodes decreases practical performance.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 6
2025-06

Note: Configurations using an even number of control planes are not supported. This
is because configurations using two control plane nodes lack etcd fault-tolerance,
which can lead to instability and lack of high availability, while configurations using
four or more provide no additional fault tolerance and increases the number of nodes
that can fail. Kubernetes documentation also recommends at least three control
plane nodes.

Best Practices for Configuring Control Plane Nodes
These practices are the default configuration for Talos Linux, regardless of whether or
not you are using Omni. We mention them to ensure that they are not overridden in
deployment unless you have a strong reason to do so.

● Ensure that KubePrism is enabled for all nodes in the cluster. This ensures all
worker and control plane processes can access the Kubernetes API, even if the
external API Server load balancer for the endpoint is down or unavailable.

For Highly Available Configurations:

● Do not allow workloads to be scheduled on control plane nodes. Doing so can
expose the control plane to instability caused by workloads consuming
resources unexpectedly and starving the control plane processes. It also
reduces security by potentially allowing workload pods to take advantage of
vulnerabilities and access secrets on the control plane. By default, Talos Linux
taints control plane nodes so they cannot run workload pods.

● For a single-node configuration, control planes must allow workloads to be
scheduled on them.

● When deploying with high availability, we recommend using Talos Linux Virtual
(Shared) IP for Kubernetes control plane access. However, this isn’t suitable for
high external load on the Kubernetes API Server, as only one control plane
node will receive requests at any given time, and it is not necessary for
single-node clusters.

Networking and CNI
By default, Talos Linux will install the Flannel CNI. Flannel is an appropriate choice for
many enterprises as it provides:

● Simple and easy configuration, with less complexity and therefore fewer issues
and easier troubleshooting.

● Lower CPU and memory resource consumption compared to Cilium.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 7
2025-06

https://etcd.io/docs/v3.5/faq/#what-is-failure-tolerance
https://etcd.io/docs/v3.5/faq/#why-an-odd-number-of-cluster-members
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/#before-you-begin
https://www.talos.dev/latest/kubernetes-guides/configuration/kubeprism/#how-it-works
https://www.talos.dev/v1.10/talos-guides/network/vip/
https://www.talos.dev/v1.10/talos-guides/network/vip/
https://github.com/flannel-io/flannel

Cilium is a supported option and is selected by many enterprises with the following
requirements:

● Clusters requiring high throughput or low latency, delivered by eBPF-powered
packet processing.

● Fine-grained network and security policies that are not possible in Flannel.

It is advised against changing a CNI once it has been deployed. Although possible,
changing CNI can cause major disruption, especially without careful attention to
detail. As Talos Linux will install Flannel by default, in order to install Cilium or change
the default Flannel configuration, it is necessary to override the machine config to
specify that no CNI should be initially installed. To do so, please use the following:

It is then recommended to deploy Cilium using a suitable method from the
documentation.

Best Practices for Networking and CNI
For Single-Node Deployments:

Disable KubeSpan. It is intended for connecting nodes in different networks together
and is not useful in this configuration

For Highly Available Configurations:

KubeSpan provides transparent network encryption between all nodes in a
cluster-wide mesh VPN network. KubeSpan is well suited for use cases that involve
bursting from one network (e.g. bare metal) to another (e.g. a cloud provider) for extra
capacity. Because KubeSpan currently creates a full mesh network, it is not
recommended for clusters with more than 100 nodes.

KubeSpan uses Wireguard VPN tunneling to provide cluster meshing. It is not
recommended for high-throughput applications such as storage replication and HPC
due to packet encryption overhead, which reduces total throughput and is best for
general cluster networking.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 8
2025-06

https://github.com/cilium/cilium
https://www.talos.dev/latest/kubernetes-guides/network/deploying-cilium/#machine-config-preparation
https://www.talos.dev/latest/kubernetes-guides/network/deploying-cilium/#installation-using-helm

Storage
While there are many different Kubernetes storage options, and Talos Linux will work
with most of them, we generally recommend:

● Longhorn, which is simple to manage, prioritizes data redundancy, exports local
filesystem storage as CSI, has configurable cluster PVC backups, and is
suitable for general Kubernetes workloads.

● OpenEBS Mayastor is a multi-mode storage provider exporting both local
filesystem storage and drives as CSI, provides replicated storage for
redundancy, has enhanced NVMe support with NVMe-TCP, features
low-latency, and is great for general Kubernetes workloads.

● Local Path Provisioner, which provides simple but less resilient storage, linking
nodes to PersistentVolumeClaims. For many use cases, Local Path Provisioner
may be sufficient for a deployment given its lightweight profile.

Alternatively, storage outside of the cluster can be consumed within a cluster, using
providers such as:

● nfs-subdir-external-provisioner

● csi-driver-iscsi

Load Balancing
While load balancing is not required in single-node clusters, we recommend MetalLB
or KubeVIP for most use cases to make exposing Services more straightforward.

With one of the above solutions, load balancing can be configured with either ARP or
BGP.

Monitoring and Logging
We recommend Prometheus for small or few clusters and VictoriaMetrics for more
complicated or large-scale deployments.

We recommend Grafana for observability and VictoriaLogs or Loki logs for logging.

It should be noted that systems running Talos Linux are compatible with most
monitoring solutions. The above are simply monitoring systems that are good choices
for Kubernetes infrastructure that we and our customers have had success with.

We recommend configuring Talos Linux to send system logs to a logging server. For
more information, see the documentation.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 9
2025-06

https://longhorn.io/
https://openebs.io/
https://www.talos.dev/v1.10/kubernetes-guides/configuration/local-storage/#local-path-provisioner
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
https://github.com/kubernetes-csi/csi-driver-iscsi
https://metallb.universe.tf/
https://github.com/kube-vip/kube-vip
https://github.com/prometheus
https://github.com/VictoriaMetrics/VictoriaMetrics
https://grafana.com
https://victoriametrics.com/products/victorialogs/
https://grafana.com/docs/loki/latest/
http://www.talos.dev/latest/talos-guides/configuration/logging/#sending-logs

Tuning
If performance is more important than minimizing power consumption, we
recommend setting appropriate performance settings, as documented in the latest
performance tuning documentation.

If desired, Talos Linux dashboard can be disabled, saving ~50MB of RAM. See the
following kernel parameter talos.dashboard.disabled=1.

Talos Linux Extensions
Talos Linux extensions provide additional functionality beyond the base OS. They are
recommended for:

● Situations where the hardware running Talos Linux requires specific firmware,
drivers, or services (i.e. GPU drivers and NIC firmware).

● Security-related features (e.g. gVisor and Kata-Containers).

● External integrations such as storage or network options (e.g. DRDB, iSCSI,
Btrfs, Cloudflared).

To install an extension, a custom Talos Linux installer image must be built with the
desired extensions included. Such an image can be produced through the hosted
service at factory.talos.dev. Aside from configuration, once deployed, the Talos Linux
OS cannot be modified without the image being replaced via an upgrade to the
custom-built image. Omni automates this process, safely rolling out new image
versions as desired.

It is recommended to install microcode extensions for the target deployment
processor, such as intel-ucode or amd-ucode.

More information can be found at:

● Talos Extensions Documentation

● SideroLabs Extensions Repository

Talos Linux Overlays
Often in edge deployments, ARM devices or embedded hardware are utilized. In order
to maximize or enable compatibility, the Talos Linux factory and imager provide
overlays for firmware, bootloader, and device tree blobs.

Overlays include support for many devices, such as:

● Raspberry Pi

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 10
2025-06

https://www.talos.dev/latest/talos-guides/configuration/performance-tuning/
https://factory.talos.dev/
https://www.talos.dev/latest/advanced/extension-services/
https://github.com/siderolabs/extensions
https://www.talos.dev/v1.10/advanced/overlays

● Orange Pi

● Rock64

● Jetson Nano

● Pine64

● And many more

See official overlays here.

Security Considerations
Talos Linux is already highly secure with a default install, but there are additional
capabilities that can be enabled. Note that there is overhead with additional security
features, whether in operational complexity or node performance.

Omni contains SideroLink which automatically creates a firewall to the Talos API and
eliminates the need to apply local firewall rules to secure the Talos API before the
node is provisioned.

TrustedBoot with SecureBoot and Disk Encryption
Talos Linux supports TrustedBoot in order to protect against boot-level malware
attacks. Talos Linux implements a fully signed execution path from firmware to
userspace. When used in conjunction with disk encryption backed by hardware TPM
or Omni’s KMS, this provides very strong protection and guarantees that only trusted
Talos Linux can run, even when an attacker has physical access to the server.

SecureBoot does complicate OS installation and upgrades, and for all cases, careful
consideration must be taken into account.

We recommend using TrustedBoot for edge deployments.

Ingress Firewall
The Talos Linux Ingress Firewall provides an additional security layer by controlling
inbound network traffic at the OS level. The Ingress Firewall defaults to “allow” for all
traffic. When using Talos Linux through Omni, the Talos Linux API is only accessible
through the SideroLink tunnel. All other access is blocked by Ingress Firewall rules.
For a production setup, we recommend blocking all traffic not explicitly permitted
and only allowing traffic explicitly to/from classes of machines, such as control plane
nodes and workers. This may be appropriate where:

● Kubernetes workloads are exposed to the internet.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 11
2025-06

https://github.com/siderolabs/overlays
https://github.com/siderolabs/siderolink

● Regulatory compliance demands OS level ingress controls and security
frameworks beyond Kubernetes-native NetworkPolicies.

● Zero-trust environments are needed to complement Kubernetes RBAC and
service mesh policies by filtering traffic at the host level.

For an example of recommended rules, see the documentation.

OS and Kubernetes Authentication
The Kubernetes API Server supports configuring the use of external auth providers,
meaning restriction based on authenticated and authorized users and identities for
cluster access. It is recommended to adopt such a mechanism for production
clusters. Any OAuth or OIDC provider is supported (such as Auth0), with varying
levels of supporting configuration and authentication proxies, simplifying compliance
and eliminating the risk of an employee leaving the enterprise with admin-level
kubeconfig access for a cluster.

PodSecurity Standards
Talos Linux defaults to the baseline PodSecurity Standards enabled. This means that
workloads cannot run with privileged security contexts, such as root user, node host
network access, hostPath, and privileged.

Some components required in edge environments may require privileged access to
engage with hardware devices, network, and local storage. We recommend placing
privileged workloads in their own namespace to limit privileged Pod SecurityContext.

For more information, see here.

Certificates and Secrets
Talos Linux uses secrets, including cluster CA and system CA, in the machine
configuration to declare the cluster.

Omni completely manages cluster secrets, ensuring they are obscured and never
revealed.

Cluster Upgrades
Omni simplifies cluster upgrades. Whether using the web interface or cluster
templates, Omni safely reconciles cluster changes such as Talos Linux and
Kubernetes versions, configuration patches, and node management declaratively by
utilizing Talos Linux and Kubernetes APIs and health checks.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 12
2025-06

https://www.talos.dev/latest/talos-guides/network/ingress-firewall/#recommended-rules
https://www.talos.dev/v1.10/kubernetes-guides/configuration/pod-security/

As cluster configuration templates are declarative and contain no secrets,
administrators can utilize Git to keep cluster changes version-controlled.
Omni carefully handles all upgrade paths between older and latest versions, ensuring
migration to the latest versions is at a suitable pace for organizational needs.

Since Talos Linux is image-based and uses an A/B boot system, upgrades between
release versions of the OS will either succeed and boot into the new release or fail and
revert back to the previous version, ensuring broken states never occur. Talos Linux
upgrades are initiated on a per-node basis. The upgrade process will cordon the node
in Kubernetes, then reboot into the new image. It is up to the user to ensure all nodes
in a cluster are upgraded consistently and follow the recommended upgrade paths.
When using Omni, Talos Linux upgrades are orchestrated on a cluster level, not a
node level. Omni handles a wider range of upgrade paths, and any upgrade allowed in
the UI is supported.

Kubernetes upgrades are managed separately from Talos Linux upgrades. During a
Kubernetes upgrade, Kubernetes is upgraded by replacing components in the
running cluster with new versions and migrating any related resources. When running
in a highly available configuration, Kubernetes upgrades are non-disruptive and do
not require a reboot.

Cluster Reproducibility
Deploying Kubernetes with Talos Linux starts with configuration. The machine
configuration is fully declarative, enabling users to describe everything about the
machine and its cluster components. Clusters can be reliably restored by applying the
configuration files for each machine to the same number and types of machines, with
the appropriate per-machine patches, and restoring etcd, making redeployments and
disaster recovery straightforward and consistent. Depending on the particular
deployment, more steps may be required.

Omni further simplifies the configuration process by creating declarative
configurations of clusters as a whole, not just a machine, allowing the creation,
templating, modification, and recreation of clusters with declarative cluster templates
that handle all cluster, machine, secret, and patch management, while never exposing
the cluster secrets.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 13
2025-06

https://www.talos.dev/latest/talos-guides/upgrading-talos/#supported-upgrade-paths

Application Management
We recommend ArgoCD for declarative GitOps-based management of applications,
where one or more git repositories act as the source of truth for what is deployed on
one or more clusters.

We recommend using Omni cluster templates for the initial configuration and
deployment of ArgoCD (as demonstrated here) and then using Argo to manage the
applications.

GitOps is incredibly important for remote deployments, where access to the cluster is
only possible through GitOps.

Additional Software
The Kubernetes ecosystem contains many options for other functions that may or
may not be desired for any particular deployment. Additional Kubernetes software
can be used to address certain needs, such as container security and compliance,
namespace controls, policy compliance and governance, CI/CD tooling, secret
management, and more. This reference architecture document does not express
opinions on these functions. However, because Talos Linux deploys vanilla upstream
Kubernetes, such clusters are compatible with virtually any of the options enterprises
may be using for these functions. For enterprises that would like specific
recommendations for their use cases, either Sidero Labs or one of our consulting
partners can be engaged for consultation.

Device Plugins
Accessing specialized or specific hardware such as cameras, robotics equipment, or
other USB and serial devices via Linux device filesystem on Talos Linux is managed in
a non-privileged way using the generic device driver plugin, if not a specific plugin
driver for Kubernetes. For details, see the documentation here.

NUT Client Extension
When deploying on the edge with a UPS and to ensure the integrity of stateful data
and hardware longevity, the NUT client extension allows for Talos Linux shutdown to
be triggered by compatible hardware when reserve power is nearly depleted.

See the following documentation:

● Sidero Labs Extensions - nut-client
● Network UPS Tools - nut

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 14
2025-06

https://argoproj.github.io/
https://github.com/siderolabs/contrib/tree/main/examples/omni
http://www.talos.dev/latest/kubernetes-guides/configuration/device-plugins%20www.talos.dev/latest/kubernetes-guides/configuration/device-plugins
https://github.com/siderolabs/extensions/tree/main/power/nut-client
https://github.com/networkupstools/nut

GPU drivers
NVIDIA GPUs are supported on Talos Linux through the NVIDIA driver extensions.
Open or closed driver variants are both available with Talos Linux extensions. To
enable it, the kernel modules and a sysctl must be configured.

For more information, please see the following documentation.

Progressive migration from Virtual Machines
KubeVirt on Talos Linux is a proven, reliable way to migrate legacy workloads from
Virtual Machines into Kubernetes for edge deployments to run alongside
containerized applications, and is also capable of ensuring the trusted execution of
processes within a virtualized environment. With KubeVirt, Virtual Machines can talk
to Pods (and vice versa) and can also be exposed like regular Pods through Services,
Ingress, Gateway-API, and more. Retaining virtual machines and running them on
Kubernetes is a helpful way to balance the needs of your organization and to ease into
the process of modernizing. Import your existing virtualized workloads using tooling
like Forklift from providers like VMware vSphere, OVA, oVirt, and OpenStack.

To effectively run Virtual Machines in KubeVirt, it is best to have:

● A CSI provider that supports LiveMigration, such as Longhorn

● A CNI plugin to provide attachment of multiple network interfaces, such as
KubeOVN or Multus, which wraps an existing CNI (e.g. Flannel, Cilium)

With its declarative configuration, workloads running through KubeVirt can be
managed through GitOps like ArgoCD. Running Virtual Machines on Talos Linux
through KubeVirt is suitable for bare metal, datacenter, and edge deployments.

Further Configuration
There are a myriad of choices available when setting up Kubernetes clusters. While
common best practices work in some scenarios, they may not be suitable for others.

Sidero Professional Services can work with you to architect a configuration tailored to
your requirements.

Contact us
If you have questions or want to discuss how to get started with Omni and Talos Linux
for Kubernetes at the edge, contact us.

 Kubernetes Cluster Edge Reference Architecture with Omni and Talos Linux Page 15
2025-06

https://www.talos.dev/latest/talos-guides/configuration/nvidia-gpu
https://kubevirt.io/
https://gateway-api.sigs.k8s.io/
https://kubev2v.github.io/forklift-documentation/documentation/doc-Migration_Toolkit_for_Virtualization/master/index.html
https://kubeovn.github.io/docs/v1.13.x/en/start/talos-install/
https://www.talos.dev/v1.10/kubernetes-guides/network/multus/
https://www.siderolabs.com/support/
mailto:info@SideroLabs.com

	Kubernetes Cluster Edge Reference Architecture with Omni and ​Talos Linux
	Executive Summary
	Technology Overview
	Talos Linux
	Omni
	Upstream Kubernetes

	Solution Overview
	Cluster Architecture
	Single Node Configuration
	Multi-node control plane
	

	Control Plane Nodes
	Best Practices for Provisioning Control Plane Nodes
	For Highly Available Configurations:

	Best Practices for Configuring Control Plane Nodes
	For Highly Available Configurations:

	Networking and CNI
	Best Practices for Networking and CNI
	For Single-Node Deployments:
	For Highly Available Configurations:

	Storage
	Load Balancing
	Monitoring and Logging
	Tuning

	Talos Linux Extensions
	Talos Linux Overlays
	Security Considerations
	TrustedBoot with SecureBoot and Disk Encryption
	Ingress Firewall
	OS and Kubernetes Authentication
	PodSecurity Standards
	Certificates and Secrets

	Cluster Upgrades
	Cluster Reproducibility
	Application Management
	Additional Software
	Device Plugins
	NUT Client Extension
	GPU drivers
	Progressive migration from Virtual Machines

	Further Configuration
	Contact us

