

Kubernetes Cluster Reference
Architecture with Talos Linux

Executive Summary
This document serves as a foundational reference for deploying highly available
Kubernetes clusters with Talos Linux, ensuring security, performance, and
operational excellence.

Kubernetes is the leading container orchestration platform, enabling organizations to
efficiently deploy, manage, and scale applications. Talos Linux brings simplicity and
security to bare-metal and edge Kubernetes, making infrastructures secure by
default, easier to use, and more reliable to operate.

This architecture document provides a blueprint for deploying a standard Kubernetes
cluster using Talos Linux, outlining best practices for management, security, high
availability, and disaster recovery to deliver a scalable and resilient platform for cloud
native applications. While there are many options for deploying Kubernetes, this is our
recommended architecture.

Technology Overview

Talos Linux
Talos Linux is an open source Linux operating system (OS) purpose-built for
Kubernetes, operates entirely through an API, eliminating traditional SSH or shell
access, thus providing a highly secure and minimal operating system for Kubernetes
clusters.

Key features include:

● Immutable OS: Prevents configuration drift and enhances security.
Image-based updates simplify upgrades and eliminate patching.

 Kubernetes Cluster Reference Architecture with Talos Linux Page 1
2025-05/2

● API-Only Management: No SSH or shell access, reducing attack surfaces.
Declarative API prevents configuration drift and imperative API endpoints
provide on-demand information gathering and debugging.

● Built-in Security: Inherent security through the implementation of Kernel
Self Protection Project standards, SELinux, TPM support, disk encryption,
SecureBoot, read-only root filesystem, boot from an in-memory SquashFS
file system, and modern cryptographic standards.

● Lightweight and Optimized: Talos Linux is designed specifically to run
Kubernetes. It includes fewer than 50 binaries and no package manager or
traditional userland tools included by default. It also provides system
extensions and overlays to add optional drivers, services, and hardware
support.

Upstream Kubernetes
Talos Linux deploys upstream Kubernetes without API modifications and ensures full
compatibility with the Kubernetes ecosystem. This provides:

● Consistent Behavior: It is a conformant Kubernetes distribution under the
CNCF Kubernetes conformance program, meaning that Kubernetes is the
same as every other distribution.

● Maximum Compatibility: Works seamlessly with all Kubernetes tooling, APIs,
and extensions.

● Security and Stability: Avoids vendor lock-in and ensures regular updates and
security patches from the Kubernetes community.

● Predictable Upgrades: Ensures smooth upgrades without proprietary patches
that could introduce unexpected issues.

By running pure upstream Kubernetes, Talos Linux provides a reliable,
community-aligned foundation for cloud native workloads.

Solution Overview
This reference architecture document targets high availability (HA) for Kubernetes,
leveraging Talos Linux as the OS. Other architectures are possible with Talos Linux
(including single node clusters, clusters that allow workload scheduling on control

 Kubernetes Cluster Reference Architecture with Talos Linux Page 2
2025-05/2

planes, and even clusters that span data centers), but this document focuses on a
standard HA cluster with dedicated control plane nodes.

Cluster Architecture
● Control Plane Nodes: Minimum and recommended odd number of three Talos

nodes for HA

● Worker Nodes: Scalable Talos Linux nodes sized for workload requirements

● Networking: Cilium, Flannel, or Calico based on deployment needs

● Storage: CSI-compatible storage solutions such as Longhorn or Ceph

Best Practices for Provisioning Control Plane Nodes
● Control plane nodes should be sized appropriately for the workloads. In order

to determine best sizing, testing with actual workloads is recommended. A
Kubernetes cluster that has few deployments, static node membership, and no
additional namespaces will have very different requirements for the control
plane nodes compared to a cluster that has a rapid rate of deployments,

 Kubernetes Cluster Reference Architecture with Talos Linux Page 3
2025-05/2

frequent worker node scaling, many namespaces, and applications that make
expensive API requests, even if they have the same number of nodes.

● As a general guideline, control planes should have either:

o A minimum of 8GB of memory, 4 cores, and 40GB of disk storage if the
cluster has fewer than 100 worker nodes

o A minimum of 32 GB of memory, 8 cores, and 40GB of disk storage if the
cluster has more than 100 worker nodes

Beyond this, sizing is dependent on the workload. We recommend gradually scaling
up the workload on the cluster and monitoring the control plane nodes. If resource
usage of either memory or CPU exceeds 60% capacity, then increase the CPU or
memory resources available to the control plane nodes. This will ensure that the
control planes have sufficient capacity to handle resource spikes without
compromising the stability of the cluster.

Best Practices for Configuring Control Plane Nodes
These practices are the default configuration on Talos Linux. We mention them to
ensure that they are not overridden in deployment.

● Do not allow workloads to be scheduled on control plane nodes. Doing so can
expose the control plane to instability caused by workloads consuming
resources unexpectedly and starving the control plane processes. It also
reduces security by potentially allowing workload pods to take advantage of
vulnerabilities and access secrets on the control plane. By default, Talos Linux
taints control plane nodes so they cannot run workload pods.

● Use an external load balancer that distributes requests to all healthy control
plane nodes for the Kubernetes API server access. Do not use the built-in Talos
Linux Virtual IP functionality for clusters with high external load on the
Kubernetes API, as only one control plane node will receive requests at any
time.

● Ensure that KubePrism is enabled for all nodes in the cluster. This ensures all
worker and control plane processes can access the Kubernetes API, even if the
external API Server load balancer for the endpoint is down or unavailable.

Networking and CNI
By default, Talos Linux will install the Flannel CNI.

 Kubernetes Cluster Reference Architecture with Talos Linux Page 4
2025-05/2

https://www.talos.dev/latest/kubernetes-guides/configuration/kubeprism/#how-it-works

Flannel is an appropriate choice for many enterprises:

● Simple and easy to configure, with less complexity (which results in fewer
issues and easier troubleshooting)

● Lower CPU and memory resource consumption compared to Cilium

Cilium is a supported option on Talos Linux and is selected by many enterprises with
the following requirements:

● Large clusters or clusters requiring high-throughput or low-latency, delivered
by eBPF-powered packet processing

● Fine-grained network and security policies that are not possible in Flannel

It is advised against changing a CNI after it’s deployed. Although possible, changing
CNI can cause major disruption, especially without careful attention to detail. Talos
Linux will install Flannel by default. In order to install Cilium or replace Flannel with a
differently configured one, it is necessary to override the machine config to specify
that no CNI should be initially installed, see the following:

It is then recommended to deploy Cilium using one of these four documented
methods.

KubeSpan
KubeSpan provides transparent wire-level network encryption between all nodes in a
cluster and simplifies network management by joining a private and secure
cluster-wide mesh VPN network. KubeSpan is well suited for use cases that involve
bursting from one network (e.g. bare metal) to another (e.g. a cloud provider) for extra
capacity. Because KubeSpan currently creates a full mesh network, it is not
recommended for clusters with more than 100 nodes.

 Kubernetes Cluster Reference Architecture with Talos Linux Page 5
2025-05/2

https://www.talos.dev/latest/kubernetes-guides/network/deploying-cilium/#machine-config-preparation
https://www.talos.dev/latest/kubernetes-guides/network/deploying-cilium/#installation-using-helm

KubeSpan uses Wireguard VPN tunneling to provide cluster meshing. It is not
recommended for high throughput applications such as storage replication and HPC
due to packet encryption overhead, which reduces total throughput and is best for
general cluster networking.

Storage
While there are many different Kubernetes storage options, and Talos Linux will work
with most of them, we generally recommend:

● Longhorn for simpler use cases. It is simple to manage, prioritizes data
redundancy, exports local filesystem storage as CSI, has configurable cluster
PVC backups, and is great for general Kubernetes workloads

● Rook+Ceph for more complex use cases. It scales infinitely but is significantly
more complex, pools full local disks and exports as CSI, requires careful tuning
for performance vs. resilience, and is not well suited for small clusters. If
running Rook+Ceph within the workload cluster, we recommend dedicated
storage nodes to isolate storage performance impacts from application
workloads. For example, operations such as rebalancing among storage nodes
can significantly affect network, memory, and CPU

● OpenEBS Mayastor is a multi-mode storage provider exporting both local
filesystem storage and drives as CSI, provides replicated storage for
redundancy, has enhanced NVMe support with NVMe-TCP, features
low-latency, and is great for general Kubernetes workloads.

Alternatively, storage outside of the cluster can also be consumed within a cluster,
using providers such as:

● github.com/kubernetes-sigs/nfs-subdir-external-provisioner
● github.com/kubernetes-csi/csi-driver-iscsi
● github.com/kubernetes-sigs/aws-ebs-csi-driver

Load Balancing
In cloud environments (AWS, GCP, Azure, etc), we recommend using the cloud
provider's native load balancing services.

In bare metal environments, we recommend MetalLB or KubeVIP for most use cases.

 Kubernetes Cluster Reference Architecture with Talos Linux Page 6
2025-05/2

https://longhorn.io/
https://rook.io/docs/rook/v1.9/ceph-storage.html
https://openebs.io/
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
https://github.com/kubernetes-csi/csi-driver-iscsi
https://github.com/kubernetes-sigs/aws-ebs-csi-driver
https://metallb.universe.tf/
https://kube-vip.io/

Monitoring and Logging
We recommend Prometheus for small or few clusters and VictoriaMetrics for more
complicated or large-scale deployments.

We recommend Grafana for observability and VictoriaLogs or Loki logs for logging.

It should be noted that systems running Talos Linux are compatible with most
monitoring solutions. The above are simply monitoring systems that are good choices
for Kubernetes infrastructure that we and our customers have had success with.

We recommend configuring Talos Linux to send system logs to a logging server, see
here.

Tuning
If performance is more important than minimizing power consumption, we
recommend setting appropriate performance settings, as documented in the latest
performance tuning page.

If desired, the Talos Linux dashboard can be disabled, saving ~50MB of RAM. See the
following kernel parameter talos.dashboard.disabled=1.

Talos Linux Extensions
Talos Linux extensions provide additional functionality beyond the base OS. They are
recommended for:

● Situations where the hardware running Talos requires specific firmware, drivers,
or services (i.e: GPU drivers, and NIC firmware)

● Security-related features (e.g: gVisor and Kata-Containers)

● External integrations such as storage or network options (e.g: DRDB, iscsi,
btrfs, Cloudflared)

To install an extension, a custom Talos Linux installer image must be built with the
desired extensions included. Such an image can suitably be produced through the
hosted service at factory.talos.dev. This means that, aside from configuration, the
Talos OS deployed cannot be modified without the image being replaced via an
upgrade to the custom-built image.

 Kubernetes Cluster Reference Architecture with Talos Linux Page 7
2025-05/2

https://grafana.com
https://victoriametrics.com/products/victorialogs/
https://grafana.com/docs/loki/latest/
http://www.talos.dev/v1.10/talos-guides/configuration/logging/#sending-logs
https://www.talos.dev/latest/talos-guides/configuration/performance-tuning/
https://factory.talos.dev/

More information can be found at:

● Talos Extensions Documentation
● SideroLabs Extensions Repository

Security Considerations
Talos Linux is already highly secure with a default install, but there are additional
capabilities that can be enabled. Note that additional security features bring
additional overhead, whether in operational complexity or node performance.

SecureBoot and Disk Encryption with TPM support
Talos Linux supports SecureBoot in order to protect against boot-level malware
attacks. Talos Linux implements a fully signed execution path from firmware to
userspace. When used in conjunction with the TPM-based disk encryption that Talos
Linux supports, this provides very strong protection and guarantees that only trusted
Talos Linux can run, even when an attacker has physical access to the server.

SecureBoot does complicate OS installation and upgrades, so it is not recommended
for all cases and requires special considerations.

Ingress Firewall
The Talos Ingress Firewall provides an additional security layer by controlling inbound
network traffic at the OS level. The Ingress Firewall defaults to “allow” for all traffic. For
a production setup, we recommend blocking all traffic not explicitly permitted and
only allowing traffic explicitly to/from classes of machines, such as control plane
nodes and workers. This may be appropriate where:

● Kubernetes workloads are exposed to the internet

● Regulatory compliance demands OS level ingress controls and security
frameworks beyond Kubernetes-native NetworkPolicies

● Zero-trust environments are needed to complement Kubernetes RBAC and
service mesh policies by filtering traffic at the host level

For an example of recommended rules, see the documentation.

 Kubernetes Cluster Reference Architecture with Talos Linux Page 8
2025-05/2

https://www.talos.dev/latest/advanced/extension-services/
https://github.com/siderolabs/extensions
https://www.talos.dev/latest/talos-guides/network/ingress-firewall/#recommended-rules

OS and Kubernetes Authentication
The Kubernetes API Server supports configuring the use of external auth providers,
meaning restriction based on authenticated and authorized users and identities for
cluster access. It is highly recommended to adopt such a mechanism for production
clusters. Any OAuth or OIDC provider is supported (such as Auth0), albeit with varying
levels of supporting configuration and authentication proxies. This simplifies
compliance and eliminates the risk of an employee leaving the enterprise with
admin-level kubeconfig access for a cluster.

PodSecurity Standards
By default, and since Kubernetes v1.23, Talos Linux has baseline PodSecurity
Standards enabled. Meaning that workloads cannot run with privileged
SecurityContexts, such as root user, node host network access, hostPath, and
privileged.

For more information, see here.

Certificates and Secrets
Talos Linux uses secrets, including cluster CA and system CA, in the machine
configuration to declare the cluster.

By default, using talosctl gen config will generate the cluster secrets inside the main
configuration document. In order to separate these values out, it is recommended to
use talosctl gen secrets, then when using talosctl gen config --with-secrets
FILE.yaml.

Certificates are able to be rotated in order to keep clusters secure. You may wish to
rotate these in order to manually revoke access due to compromise. Please read more
here.

By using Talos CCM, secrets are able to be automatically rotated, see:
github.com/siderolabs/talos-cloud-controller-manager

Cluster Upgrades
Since Talos Linux is image-based and uses an A/B boot system, upgrades between
release versions of the OS will either succeed and boot into the new release or fail and
revert back to the previous one, never causing a broken state.

 Kubernetes Cluster Reference Architecture with Talos Linux Page 9
2025-05/2

https://www.talos.dev/v1.10/kubernetes-guides/configuration/pod-security/
http://www.talos.dev/v1.10/advanced/ca-rotation
https://github.com/siderolabs/talos-cloud-controller-manager

Similarly, Kubernetes upgrades are managed separately from Talos Linux upgrades,
where a version of Kubernetes is upgraded via replacing components in the running
cluster with new versions and migrating any related resources.

Cluster Reproducibility
Deploying Kubernetes with Talos Linux starts with configuration. As the cluster
configuration is fully declarative, it describes everything about the machine and
cluster components. Clusters can be reliably restored by simply applying the same
configuration file and restoring etcd, making redeployments and disaster recovery
straightforward and consistent. Depending on deployments, more steps may be
required.

Application Management
We recommend ArgoCD for declarative GitOps-based management of applications,
where one or more git repositories act as the source of truth for what is deployed on
one or more clusters.

We recommend using Omni cluster templates for the initial configuration and
deployment of ArgoCD (as demonstrated here) and then using Argo to manage the
applications.

Further Configuration
There is an ever-expanding number of choices available when setting up Kubernetes
clusters. While common best practices work in some scenarios, they may not be
suitable for others.

Sidero Professional Services can work with you to architect a configuration that is
tailored to your requirements.

Additional Software
The Kubernetes ecosystem contains many options for other functions that may or
may not be desired for any particular deployment. Additional Kubernetes software
can be used to address certain needs such as container security and compliance,
namespace controls, policy compliance and governance, CI/CD tooling, secret

 Kubernetes Cluster Reference Architecture with Talos Linux Page 10
2025-05/2

https://argoproj.github.io/
https://github.com/siderolabs/contrib/tree/main/examples/omni

management, and more. This reference architecture document does not express
opinions on these functions. However, because Talos Linux deploys vanilla upstream
Kubernetes, such clusters are compatible with virtually any of the options enterprises
may be using for these functions. For enterprises that would like specific
recommendations for their use cases, either Sidero or one of our consulting partners
can be engaged for consultation.

Progressive migration from Virtual Machines
KubeVirt on Talos Linux is a proven, reliable way to migrate legacy workloads from
Virtual Machines into Kubernetes to run alongside containerized applications. With
KubeVirt, Virtual Machines are able to talk to Pods (and vice versa) and can also be
exposed like regular Pods through Services, Ingress, Gateway-API, and more.
Retaining Virtual Machines and running them on Kubernetes is a helpful way to
balance the needs of your organization and to ease into the process of modernizing.
Import your existing virtualized workloads using tooling like Forklift from providers
like VMware vSphere, OVA, oVirt, and OpenStack.

To effectively run Virtual Machines in KubeVirt, it is best to have the following:

● a CSI provider that supports LiveMigration, such as Longhorn
● a CNI plugin to provide attachment of multiple network interfaces, such as

KubeOVN or Multus, which wraps an existing CNI (e.g. Flannel, Cilium)

With its declarative configuration, workloads running through KubeVirt are able to be
managed through GitOps like ArgoCD. Running Virtual Machines on Talos Linux
through KubeVirt is suitable for bare metal, datacenter, and edge deployments.

For more information, please refer to the documentation here.

Contact us
If you have questions or want to discuss how to get started with Omni and Talos Linux
for Kubernetes at the edge, contact us.

 Kubernetes Cluster Reference Architecture with Talos Linux Page 11
2025-05/2

https://kubevirt.io/
https://gateway-api.sigs.k8s.io/
https://kubev2v.github.io/forklift-documentation/documentation/doc-Migration_Toolkit_for_Virtualization/master/index.html
https://kubeovn.github.io/docs/v1.13.x/en/start/talos-install/
https://www.talos.dev/v1.10/kubernetes-guides/network/multus/
http://www.talos.dev/v1.10/advanced/install-kubevirt/
mailto:info@SideroLabs.com

	Kubernetes Cluster Reference Architecture with Talos Linux
	Executive Summary
	Technology Overview
	Talos Linux
	Upstream Kubernetes

	Solution Overview
	Cluster Architecture
	
	Best Practices for Provisioning Control Plane Nodes
	Best Practices for Configuring Control Plane Nodes

	Networking and CNI
	KubeSpan

	Storage
	Load Balancing
	Monitoring and Logging
	Tuning

	Talos Linux Extensions
	Security Considerations
	SecureBoot and Disk Encryption with TPM support
	Ingress Firewall
	OS and Kubernetes Authentication
	PodSecurity Standards
	Certificates and Secrets

	Cluster Upgrades
	Cluster Reproducibility
	Application Management
	Further Configuration
	Additional Software
	Progressive migration from Virtual Machines

	Contact us

